Predicting satisfaction with democracy in Brazil considering data form an opinion survey
DOI:
https://doi.org/10.15675/gepros.2965Palavras-chave:
Machine learning, Democracy, Classification, SatisfactionResumo
Purpose – This article compared machine learning algorithms in the context of satisfaction with democracy in Brazil. The models were trained with data from the Latinobarómetro survey, a private non-profit institution.
Theoretical foundation – The Support Vector Classifier (SVC), Random Forest (RF), and Artificial Neural Networks (ANN) classification techniques were described, followed by evaluation metrics, such as accuracy, precision, recall, f1-score and the area under a receiver operating characteristic (auc-roc).
Methodology – The data set was cleaned and the questionnaire was reduced to variables related to the local democracy index (IDL). Then, attribute transformations were performed, hyperparameters were analyzed and subsets with different class balances were created to evaluate the performance of the classifiers in different scenarios. Also, the attributes that most contributed to satisfaction with democracy were analyzed.
Results – The best classifier was RF for the class of those dissatisfied with democracy, however, the ANN and SVC techniques obtained better results in the class of satisfied individuals. Evaluating the most important attributes for satisfaction with democracy, it was identified that they are related to the country's economic situation and political and governmental issues.
Research implications – The models created were mainly able to identify people dissatisfied with democracy. The most important variables in this context were economy performance, government, political positioning, and democracy. This indicates directions for future studies and enables the development of strategies to change the perception of dissatisfied individuals.
Originality/Value – Exploring data on democracy from the Latinobarómetro using machine learning techniques in the context of Brazil.
Keywords: Machine learning; Democracy; Classification; Satisfaction.
Referências
Aggarwal, C. C. (2018). Neural Networks and Deep Learning. In Neural Networks and Deep Learning. Springer International Publishing. https://doi.org/10.1007/978-3-319-94463-0 DOI: https://doi.org/10.1007/978-3-319-94463-0
Albright, J. (2016, November 26). How Trump’s campaign used the new data-industrial complex to win the election. Https://Blogs.Lse.Ac.Uk/Usappblog/2016/11/26/How-Trumps-Campaign-Used-the-New-Data-Industrial-Complex-to-Win-the-Election/.
Ateca-Amestoy, V., Aguilar, A. C., & Moro-Egido, A. I. (2014). Social Interactions and Life Satisfaction: Evidence from Latin America. Journal of Happiness Studies, 15(3), 527–554. https://doi.org/10.1007/s10902-013-9434-y DOI: https://doi.org/10.1007/s10902-013-9434-y
Barredo Ibáñez, D. (2018). Religious Commitment, Subjective Income, and Satisfaction towards the Functioning of Democracy in Latin America. A Mediation Analysis Model Based on Latinobarómetro. Religions, 9(6), 198. https://doi.org/10.3390/rel9060198 DOI: https://doi.org/10.3390/rel9060198
Berry, B. J. L., & Rodriguez, O. S. T. (2010). Dissatisfaction with Democracy: Evidence from the Latinobarómetro 2005. Journal of Politics in Latin America, 2(3), 129–142. https://doi.org/10.1177/1866802X1000200305 DOI: https://doi.org/10.1177/1866802X1000200305
Bhojani, S., & Bhatt, N. (2016). Data Mining Techniques and Trends – A Review. Global Journal for Research Analysis, 5(5), 252–254.
Blagus, R., & Lusa, L. (2013). SMOTE for high-dimensional class-imbalanced data. BMC Bioinformatics, 14(1), 106. https://doi.org/10.1186/1471-2105-14-106 DOI: https://doi.org/10.1186/1471-2105-14-106
Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. https://doi.org/10.1007/9781441993267_5 DOI: https://doi.org/10.1023/A:1010933404324
Brito, K., & Adeodato, P. J. L. (2023). Machine learning for predicting elections in Latin America based on social media engagement and polls. Government Information Quarterly, 40(1), 101782. https://doi.org/10.1016/j.giq.2022.101782 DOI: https://doi.org/10.1016/j.giq.2022.101782
Broderstadt, T. S. (2023) An Empirical Evaluation of Explanations for Political System Support. Political Research Quarterly, 76 (3). https://doi.org/10.1177/10659129231156388 DOI: https://doi.org/10.1177/10659129231156388
Chawla, N. V. (2006). Data Mining for Imbalanced Datasets: An Overview. In Data Mining and Knowledge Discovery Handbook (pp. 853–867). Springer-Verlag. https://doi.org/10.1007/0-387-25465-x_40 DOI: https://doi.org/10.1007/0-387-25465-X_40
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953 DOI: https://doi.org/10.1613/jair.953
Géron, A. (2019). Hands-on: Machine Learning with Scikit-Learn, Keras & Tensorflow (2nd ed.). O’Reilly Media.
Gründler, K., & Krieger, T. (2021). Using Machine Learning for measuring democracy: A practitioners guide and a new updated dataset for 186 countries from 1919 to 2019. European Journal of Political Economy, 70, 102047. https://doi.org/https://doi.org/10.1016/j.ejpoleco.2021.102047 DOI: https://doi.org/10.1016/j.ejpoleco.2021.102047
Jiang, W., He, G., Long, T., Ni, Y., Liu, H., Peng, Y., Lv, K., & Wang, G. (2018). Multilayer perceptron neural network for surface water extraction in landsat 8 OLI satellite images. Remote Sensing, 10(5). https://doi.org/10.3390/rs10050755 DOI: https://doi.org/10.3390/rs10050755
Kang, I., Kim, N., Loh, W., & Bichelmeyer, B. (2021) A Machine-Learning Classification Tree Model of Perceived Organizational Performance in U.S. Federal Government Health Agencies. Sustainability, 13(18). https://doi.org/10.3390/su131810329 DOI: https://doi.org/10.3390/su131810329
Lee, J., & Pak, T. (2022) Machine learning prediction of suicidal ideation, planning, and attempt among Korean adults: A population-based study. SSM - Population Health, 19. DOI: https://doi.org/10.1016/j.ssmph.2022.101231
Liu, Y., Esan, O. C., Pan, Z., & An, L. (2021). Machine learning for advanced energy materials. Energy and AI, 3, 100049. https://doi.org/10.1016/j.egyai.2021.100049 DOI: https://doi.org/10.1016/j.egyai.2021.100049
Marek, J. (2021). The Public Perception of Police Corruption in Venezuela and its Effect on National Government. Revista Sul-Americana de Ciência Política, 1(3), 1–21. DOI: https://doi.org/10.15210/rsulacp.v1i3.3319
Morabito, V. (2016). The Future of Digital Business Innovation. Springer International Publishing. https://doi.org/10.1007/978-3-319-26874-3 DOI: https://doi.org/10.1007/978-3-319-26874-3
Müller, A. C., & Guido, S. (2017) Introduction to Machine Learning with Python: a guide for data scientists, O’Reilly Media.
Nascimento, F.M., Barone, D., & Castro, H. C. (2019) Social Activism Analysis: An Application of Machine Learning in the World Values Survey. Proceedings of the MLDM, v. 1, pp. 28-38.
Pecorari, N., & Cuesta, J. (2023). Citizen Participation and Political Trust in Latin America and the Caribbean: A Machine Learning Approach. Policy Research Wrking Papers, 10335. DOI: https://doi.org/10.1596/1813-9450-10335
Plotnikova, V., Dumas, M., & Milani, F. (2020). Adaptations of data mining methodologies: a systematic literature review. PeerJ Computer Science, 6, e267. https://doi.org/10.7717/peerj-cs.267 DOI: https://doi.org/10.7717/peerj-cs.267
Power, T. J., & Jamison, G. D. (2005). Desconfiança política na América Latina. Opinião Pública, 11(1), 64–93. https://doi.org/10.1590/S0104-62762005000100003 DOI: https://doi.org/10.1590/S0104-62762005000100003
Raschka, S. (2015). Python Machine Learning (1st ed.). Packt Publishing Ltd.
Resende, R. C., & Epitácio, S. D. S. F. (2014). Desenvolvimento econômico e satisfação com a democracia: uma análise da América Latina. Ciências Sociais Unisinos, 50(2). https://doi.org/10.4013/csu.2014.50.2.03 DOI: https://doi.org/10.4013/csu.2014.50.2.03
Saarela, M., & Jauhiainen, S. (2021). Comparison of feature importance measures as explanations for classification models. SN Applied Sciences, 3(2), 272. https://doi.org/10.1007/s42452-021-04148-9 DOI: https://doi.org/10.1007/s42452-021-04148-9
Saravia, A., & Marroquín, A. (2023). Political ideology mismatch as a determinant of the intention to migrate: evidence from Latin America. International Journal of Social Economics, 50(1), 97–110. https://doi.org/10.1108/IJSE-01-2022-0028 DOI: https://doi.org/10.1108/IJSE-01-2022-0028
Silva, D. R. de M., & Mizuca, H. D. de. (2021). Índice de democracia local: estudos a partir da experiência de São Paulo (1st ed.). Instituto Atuação.
Sima, D., & Huang, F. (2023). Is democracy good for growth? — Development at political transition time matters. European Journal of Political Economy, 102355. https://doi.org/10.1016/j.ejpoleco.2022.102355 DOI: https://doi.org/10.1016/j.ejpoleco.2022.102355
Speiser, J. L., Miller, M. E., Tooze, J., & Ip, E. (2019). A comparison of random forest variable selection methods for classification prediction modeling. Expert Systems with Applications, 134, 93–101. https://doi.org/10.1016/j.eswa.2019.05.028 DOI: https://doi.org/10.1016/j.eswa.2019.05.028
Tan, P.-N., Steinbach, M., Karpatne, A., & Kumar, V. (2019). Introduction to Data Mining (2nd ed.). Pearson Prentice Hall.
Tsyganov, V. (2021). Supervised Machine Learning of Citizens and Political Stability. IFAC-PapersOnLine, 54(13), 611–616. https://doi.org/10.1016/j.ifacol.2021.10.517 DOI: https://doi.org/10.1016/j.ifacol.2021.10.517
Valero-Carreras, D., Alcaraz, J., & Landete, M. (2023). Comparing two SVM models through different metrics based on the confusion matrix. Computers & Operations Research, 152, 106131. https://doi.org/10.1016/j.cor.2022.106131 DOI: https://doi.org/10.1016/j.cor.2022.106131
Waqar, M., Dawood, H., Dawood, H., Majeed, N., Banjar, A., & Alharbey, R. (2021). An Efficient SMOTE-Based Deep Learning Model for Heart Attack Prediction. Scientific Programming, 2021, 1–12. https://doi.org/10.1155/2021/6621622 DOI: https://doi.org/10.1155/2021/6621622
Witten, I. H., & Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques (2nd ed.). Elsevier Ltd.
Yida Tao, Shan Tang, Yepang Liu, Zhiwu Xu, & Shengchao Qin. (2021). Speeding Up Data Manipulation Tasks with Alternative Implementations: An Exploratory Study. ACM Transactions on Software Engineering and Methodology, 30(4), 1–28. https://doi.org/https://doi.org/10.1145/3456873 DOI: https://doi.org/10.1145/3456873
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Douglas Martins de Souza Rosa, Bruno Samways dos Santos, Rafael Henrique Palma Lima
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
O(s) autor(es) do artigo autorizam a publicação do texto na revista e garantem que a contribuição é original e inédita, não estando em processo de avaliação em outra(s) revista(s). As opiniões, ideias e conceitos emitidos nos textos são de inteira responsabilidade do(s) autor(es), não sendo a revista responsável por tais conteúdos.
Os editores da revista reservam o direito de efetuar ajustes textuais e de adequação às normas da publicação, caso necessário.
Os autores mantêm os direitos autorais sobre o trabalho e concedem à revista o direito de primeira publicação, sendo o trabalho simultaneamente licenciado sob a Attribution 4.0 International (CC BY 4.0), o que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
Os autores têm autorização para firmar contratos adicionais, separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.